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Correlation Inequalities and Contour Estimates 
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We give a simple estimate on the probability of contours in classical ferromag- 
netic spin systems, based on Griffiths' or Ginibre's correlation inequalities. This 
includes quite general one- and two-component spin models. Some extension 
also holds for all n-component anisotropic or isotropic rotators. 
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1. INTRODUCTION 

In the Peierls' argument for phase transition there are two distinct steps: 
one is an entropy estimate which counts the number of contours of a given 
length and the other is an energy estimate. Take, for example, the Ising 
model in any dimension: 

- H = J E o i o j ,  Oi= +--1 
(0") 

Then for any finite volume A and any contour y in A, the energy estimate 
is 

PA(o, oj = - 1 V(/j) ~ V) < exp( -2f l J lv l )  (1) 

where PA is the probability in the Gibbs state in A with ferromagnetic 
boundary conditions (e.g., + or free) on A. 

Inequalities like (1) are obtained by estimating, for each configuration 
where the contour y occurs, the gain in energy produced by "flipping" the 

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544. Supported 
by NSF grant No. MCS78-01885. 

a On leave from: Institut de Physique Th~orique, Universit~ de Louvain, Belgium. 
3 Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. 

Supported by NSF grant No. PHY78-15920. 

745 

0022-4715/81/1200-0745503.00/0 �9 1981 Plenum Publishing Corporation 



746 Bricmont and Fontaine 

spins inside 7. This works well for discrete spins but if the spins are 
continuous (as in rotator models) one may find some configurations where 
flipping the spins produces an arbitrarily small gain in energy. However, 
the method was extended to continuous spins by Bortz and Griffiths, ~ 1) van 
Beijeren and Sylvester, ~2) and in a quite general way by Malyshev. ~s) These 
authors suitably modify the definition of contours in order to extract a 
fixed energy gain (at least for models with a finite number of ground 
states). In particular, Malyshev O) was able to prove the existence of phase 
transition for anisotropic rotators with any anisotropy on a lattice of 
dimension greater than or equal to 2. 

Let us mention that another method allows one to prove phase 
transition for continuous spins. By correlation inequalities, one compares 
these models with other continuous or.discrete spin models that one can 
handle directly. This was initiated by Nelson, ~4) extended by van Beijeren 
and Sylvester ~2) to all one-component continuous spins with even single- 
spin measure and pair interactions, and by Kunz, Pfister, and Vuillermot ~5) 
to two-component anisotropic rotators. Finally, a general form of such 
comparison inequalities was proven by Wells. 4 

Coming back to contour estimates, a new method was developed in 
Refs. 8-10 based on reflection positivity. This method does not work 
configuration by configuration but reduces estimates like (1) to some 
thermodynamic estimate on the free energy. It allows one to deal with some 
nonferromagnetic models, also with quantum models and n-component 
anisotropic rotators. ~9) 

In the method presented here, we also avoid making an estimate on 
each configuration. However, we go in a direction opposite to the one of 
the reflection positivity method. Instead of reducing everything to a ther- 
modynamic estimate, we reduce an estimate like (1), which has to be 
uniform in the volume A, to an estimate on a fixed finite set of sites. And 
there it is a simple computation. Because this reduction is based on the 
correlation inequalities of Griffiths r or Ginibre, ~2) we are limited to 
ferromagnetic systems but not to reflection positive ones. 

In Section 2, we state and prove our results for one-component systems 
with general ferromagnetic interactions and even single-spin measures. 

In Section 3, we extend these results to plane rotators (two-component 
models) and prove the result quoted in Ref. 13. 

Section 4 deals with n-component rotators, where somewhat weaker 
results are obtained; however, this also proves a contour estimate which 
implies phase transition for n-component anisotropic rotators. 

4 See Ref. 6 or, for a published version, Ref. 7. 
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2, ONE-COMPONENT SYSTEMS 

Consider the probability measure /~ on R IAI, where A is some finite 
subset of Za: 

dl~ = Z-lexp[ /3A~CAJ (A)SA I X-[i~A dPi( Si ) 
where the sum ~A runs over multiplicity functions in A (i.e., functions 
from A into •), Sa = I'[iS~(i); J(A)>1 0 and /3= T -1 is the inverse 
temperature; the measures Pi on R are even and decay sufficiently rapidly 
at infinity; and 

Z=~IA[exp[ /3AECAJ(A)XA]i~AdPi(Si) 
Let ( )  denote the expectation with respect to/L. 
Define, for any multiplicity function A, 

f Saexp[ �89 
ca = fexp[ �89  

Notice that C a > 0 is increasing in /3 and that, as /3-->~, C a 
I-L[sup(supp v;)] a(i) (which may be infinity) if J(A) =/: O. 

Theorem 1. For any family ~ of multiplicity functions and any 
da > O, A ~ 91L, 

(A~ X(SA " Ca -da)) <exp[-- -~A~ J(A)da ] 

In particular (d a = CA), 

(A~ x(S a < 0 ) ) < e x p [ - - ~ A ~  J(A)Cal 

X(') being the characteristic function of the event in parentheses. 

Proof. We write 

= ( A ~  ( X(Sa< Ca-da ) e x p [ - ~ J ( A ) S a ] e x p [ - - ~ J ( A ) S a ] ) )  

<exp-~A~ J(A)(C a -d  a)(AH e x p [ - ~ J ( A ) S  A]) (2) 
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But 

where ( >' is the same measure as ( > but with J(A) replaced by J(A) /2  
for all A ~ ~'~L. 

Now, by Jensen's inequality 

and by Griffiths' inequalities (1~ (monotonicity of (S  A >' in all the J 's)  

<&>'> cA (5) 
Combining (2), (3), (4), (5) ends the proof. [] 

Remarks. (1) We use correlation inequalities only to get a lower 
bound on (So>'. However, the proof shows that if, by some means, we 
know that (So>' remains strictly positive as A-->Z a, / 3 + m ,  then by 
Jensen's inequality the probability that S a be negative is exponentially 
small with/3 as 13 + m. 

(2) Given Theorem 1, the question of whether there is a phase 
transition or not for/3 large depends only on the "geometry" of the set of 
A's where J(A) 4 = O. For the spin-l /2  case [vi(S/) = 8(Si 2 - 1)], it is shown 
in Ref. 14 how to solve that problem by purely algebraic methods. Al- 
though in Ref. 14 the "decomposition property" is also used in the energy 
estimate, Theorem 1 shows that it only plays a crucial role in the entropy 
estimate. Using the results of Ref. 6 one can extend the analysis of Ref. 14 
to general even a priori measures; see Ref. 7. 

3. PLANE ROTATOR MODELS 

Let q~i E S 1 = [-or,  7r] and the probability measure/x on (S 1)tAt given 
by 

d/~ = Z - ' e x p [ / 3  2 J , jcos(r  Cj) + ~] hicosr 1-[ dqh 
t (i,j) ~ A l E A  J i ~ A  

where the sum is over all pairs of points i, j E A and J0 > 0, h i > 0. (h/ 
allows for ferromagnetic boundary conditions). Again ( > is the expectation 
with respect to it. 

Theorem 2. There exists a constant c such that, for any d > 0 and 
any family 91L of pairs (i , j)  i , j  E A: 

( H X(]~)i- q~j] > dmodulo 2 r r ) ) <  c e x p ( -  - 7 )  
(i,j) e 
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Proof. As in the preceding proof, we write 

( II X([~i- ~j[> dmod 2~r)) 
(id") E 6~L 

1 - - 2  d 2 ) E  Jijl( II expI---~Joc~ 
because cosx < 1 - (2/Tr2)d 2 for d < Ixl ,~. 

Now, by inverting the last factor and using Jensen's and Ginibre's 
inequalities (12) as in the proof of Theorem 1, we obtain 

((;, f I  ~ exp [--~fl Jgjc~ ~J)] ) <  exp(f l (~ , j )~Y~jc i j )  

where 

f~_~ cos(q/-  ~j)exp[ �89 flJgcos(~i - ~,j) ] d~id~) j 

% = f%~exp[ �89 flJ~jcos(~, i - ~j) ] de~idep j 

But by doing an asymptotic expansion of c 0. one sees that %/> 1 - c ' T  
which concludes the proof. [In the theorem c = exp(+ 1tic, T).] �9 

R e m a r k s .  (1) The result extends to any interaction 

- H =  ~ J(m)cosmdp,  J ( m )  >1 0 
incA 

because it satisfies Ginibre's inequality(12); in that case one obtains 

(2) Moreover, for anisotropic rotators: 

- - n  = E/ / jcos(( j~i -  ~.)j) "4- D/jCOS r r i,jEA 
Jij >1 O, Dij >1 0 

We have, using the proof of Theorem 1 and Ginibre's inequality, that, for 
any c > O, 

(rl X(C~176 1--')> <'<(cexp----~) y-'~i'j'~mD~ 
(i,j) ~ 
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(3) Instead of having rotators with fixed length one can allow for some 
other a priori measure (see Ref. 16). 

4. N-COMPONENT ROTATORS 

Let for each i ~ A S i E S "-1 the unit sphere in R n, 

n 

S i = ( s i ' , . . . , S i " )  and [Sil 2=  2 ( S ? ) 2 = l  
a = l  

Consider the probability measure/z on (S n- l)lAl: 

z ,oxpfy + +  s,'l H 
�9 " i ~ A  J i E A  

with J~j >1 O, D O. >1 O, h i >10. 
S i . S  j is the scalar product between S i and Sj. JijSiSj is the isotropic 

part of the interaction and D,~ is the anisotropy favoring the direction S} ; h i 
allows for ferromagnetic boundary conditions in that direction. 

Let ( )  be the expectation with respect to/~. 

Theorem 3. There exists a constant c such that, for any family ~L of 
pairs (i, j), i, j ~ A: 

(a) { r I  x(sitsj  1 < 0 ) ) <  cexp - 2en 2 
(i,j) ~ ~ 

(b) /(i,))i-i Si .  S j < O )  < [ c e x p (  - 2--~n2]JB ~]y,(,.;~o~s~ 

Proof. (a) Following the proof of Theorem 1, we see that we have 
only to obtain a lower bound, uniform in A and r ,  on (SilSjl) ' for those 
pairs (i, j )  with D/j > 0. ( ) '  corresponds to the measure similar to (~  but 
with DiJ2  instead of D~ for all pairs (i, j )  ~ aYL. 

We derive this lower bound in two steps: first we show that it is 
enough to bound from below ((Sil)2(Sjl)2~ ' and then we use an inequality 
of Simon, (15) valid for all n-component rotators, to bound the latter 
quantity. 

(1) We start by conditioning in (SilSjI~ ' on all the spin components 
other than the first one: 

(Si]Sj')' = f (s i ' sJ ' ) ({  Si ~ )i~A,~=2 . . . . . .  )dp(S['  ) (6) 

where-( ~(( S/~ )~ = 2,i ~ A) is the conditional expectation with respect to (S/~ ), 
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a :/: 1, or, explicitly, the expectation with respect to 

~-'~,o~{ B ~ E~,J +~,~-I~;'~ -I } 
(i,j) ~ A 

Z being the corresponding normalization. The (�89 multiplying D 9 indicates 
that, for those pairs (i, j )  E ~ D,j is replaced by D J 2 .  

o(Si ~) is simply the measure <) '  restricted to {Si~}, a r 1. 
Notice that, for any value of {S/s}, a ~ 1, (7) is a one-component 

ferromagnetic measure and therefore satisfies Griffiths' second inequal- 
ity. (11) Thus we have 

<SiSj)({S ~ }2=1,i E A) > <SiSj)(Si'~,ST,a :/: 1) (8) 

where the right-hand side is the expectation with respect to 

D/j i 1 

X~ ((sii)2- I1 - a~_2(Si a )2]}~ ((sj.l)2 f l- a~2(SJa )2] } d S i l d S j l  

Now, <SiSj)(S/~, S 7, a v ~ 1) is larger, again by Griffiths' inequalities (11) 
than its value when J y - - 0  and f lDo./2- 1 at least for BD~/2 > 1. (For 
tiDal2 < 1 the inequality in the theorem is trivial to prove if we choose c 
appropriately.) But, if flDo./2 = 1, and Jo = O, Z(S~, S 7, a v ~ 1) < e inde- 
pendently of S~ ~, Sj ~, a v~ 1. Now we expand the exponential in 

for flD~j/2 = 1, and using the positivity of all terms, keep only the one of 
first degree, so that 

<~,,,~,>~,o, ~, o + ,~ ~> e-'S~,' ~ - '  ~ l~', l ~ - [ l - A  ~': ~] } 
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and the last integral is 

Inserting (8), (9), (lO) in (6) we have (for tiDy~2 > 1) 

( s i l s j ' ) ' > e - ' f [ 1 -  k ( S f ' ) 2 ] [ 1 -  k ( S T ) 2 ]  a = l  (11) 

But because in do the " ~ 2 ~,, ~ = 2(Si ) is constrained by the 8 measures to 
be equal to 1 -  (S/) 2 and because d o is nothing but the measure ( ) '  
restricted to the variables (S/~ ) a v ~ 1, the fight-hand side of (11) is equal to 
((S/)2(Sjl)2) ' and therefore we have shown that 

<s,,s)> e-'qS,')2(S) )2> ' 
(2) Now we have only to bound ( (S i l )2 (S} )2> ' from below. But this 

follows easily from an inequality of Simon, (15) which says that 

and 

((Si , ) 2  (S 7)2~, > 0 (13) 

for all a = 1 . . . . .  n. So that 

1 " <(s,' )2> s by(12) 

_ 1 ( (S / )  2) because k ($7 )  2= 1 
n a = l  

1 
n 2 

(b) We can reduce ourselves to obtain a lower bound on 

<si . s y  
where in (>'  Jo is replaced by Jo./2 for all (i, j )  ~ 6YfC. 

But since (S~$7}' is positive by the first Griffiths inequality (valid for 
all n-component rotators Oa6)) we can repeat the argument given in the 
proof of (a) for (S/1Sjl}. Actually if D O. = h i = 0, we gain a factor of n 
because ($7S7> = ( ~ i l ~ . l > v o t .  �9 
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Remarks .  (1) Theorem 3 is weaker than the analog of Theorems 1 
and 2 because we do not show that Si1Sj 1 or S; .  Sj approaches 1 as fl--) 
but only that it cannot be negative. Actually one could push the estimates 
up to silsj  1 ~ 1/2en 2 -  c, e > 0, but for the case of reflection positive 
interactions, one can show that the probability that S i . S  j < 1 - c  is 
exponentially small as f l -~  ~ ,  for any e > 0. 

(2) However, Theorem 3 (a) is all that is needed in order to prove that 
anisotropic rotators with any anisotropy [that is, Dy v a 0 but as small as one 
wishes for (i, j )  nearest neighbors] have a spontaneous magnetization for fl 
large when the lattice dimension is greater than or equal to 2. 
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